Weak-type estimates in Morrey spaces for maximal commutator and commutator of maximal function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00490765" target="_blank" >RIV/67985840:_____/18:00490765 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3836/tjm/1502179258" target="_blank" >http://dx.doi.org/10.3836/tjm/1502179258</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3836/tjm/1502179258" target="_blank" >10.3836/tjm/1502179258</a>
Alternative languages
Result language
angličtina
Original language name
Weak-type estimates in Morrey spaces for maximal commutator and commutator of maximal function
Original language description
In this paper it is shown that the Hardy-Littlewood maximal operator M is not bounded on Zygmund-Morrey space, but M is still bounded for radially decreasing functions. The boundedness of the iterated maximal operator M^2 from Zygmund-Morrey space to weak Zygmund-Morrey space is proved. The class of functions for which the maximal commutator C_b is bounded from Zygmund-Morrey space to weak Zygmund-Morrey space are characterized. It is proved that the commutator of the Hardy-Littlewood maximal operator M for BMO function b with bounded negative part is bounded from Zygmund-Morrey space to weak Zygmund-Morrey space. New pointwise characterizations of iteration of maximal and fractional maximal functions by means of norm of Hardy-Littlewood maximal function in classical Morrey spaces are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Tokyo Journal of Mathematics
ISSN
0387-3870
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
1
Country of publishing house
JP - JAPAN
Number of pages
26
Pages from-to
193-218
UT code for WoS article
000439424800009
EID of the result in the Scopus database
2-s2.0-85051184004