All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A conservative scheme for the Fokker-Planck equation with applications to viscoelastic polymeric fluids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00492752" target="_blank" >RIV/67985840:_____/18:00492752 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jcp.2018.08.015" target="_blank" >http://dx.doi.org/10.1016/j.jcp.2018.08.015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcp.2018.08.015" target="_blank" >10.1016/j.jcp.2018.08.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A conservative scheme for the Fokker-Planck equation with applications to viscoelastic polymeric fluids

  • Original language description

    We propose a conservative scheme for a high-dimensional Fokker–Planck equation that arises in the dynamics of infinitely extensible polymer molecules. This leads to a challenging problem of unbounded domain. Our scheme combines the Lagrange–Galerkin method and the Hermite spectral method together with a space splitting approach. We prove that the scheme preserves the discrete mass. Combining it with a stabilized Lagrange–Galerkin method for the Navier–Stokes equations, we further propose a multiscale scheme for the simulation of some viscoelastic polymeric fluids. Several numerical experiments are presented to illustrate the performance of the schemes, and to confirm the conservation of mass at the discrete level.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational Physics

  • ISSN

    0021-9991

  • e-ISSN

  • Volume of the periodical

    374

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    941-953

  • UT code for WoS article

    000447904200043

  • EID of the result in the Scopus database

    2-s2.0-85051380827