A conservative scheme for the Fokker-Planck equation with applications to viscoelastic polymeric fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00492752" target="_blank" >RIV/67985840:_____/18:00492752 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jcp.2018.08.015" target="_blank" >http://dx.doi.org/10.1016/j.jcp.2018.08.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcp.2018.08.015" target="_blank" >10.1016/j.jcp.2018.08.015</a>
Alternative languages
Result language
angličtina
Original language name
A conservative scheme for the Fokker-Planck equation with applications to viscoelastic polymeric fluids
Original language description
We propose a conservative scheme for a high-dimensional Fokker–Planck equation that arises in the dynamics of infinitely extensible polymer molecules. This leads to a challenging problem of unbounded domain. Our scheme combines the Lagrange–Galerkin method and the Hermite spectral method together with a space splitting approach. We prove that the scheme preserves the discrete mass. Combining it with a stabilized Lagrange–Galerkin method for the Navier–Stokes equations, we further propose a multiscale scheme for the simulation of some viscoelastic polymeric fluids. Several numerical experiments are presented to illustrate the performance of the schemes, and to confirm the conservation of mass at the discrete level.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational Physics
ISSN
0021-9991
e-ISSN
—
Volume of the periodical
374
Issue of the periodical within the volume
December
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
941-953
UT code for WoS article
000447904200043
EID of the result in the Scopus database
2-s2.0-85051380827