Global existence of a diffusion limit with damping for the compressible radiative Euler system coupled to an electromagnetic field
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00494449" target="_blank" >RIV/67985840:_____/18:00494449 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.12775/TMNA.2018.026" target="_blank" >http://dx.doi.org/10.12775/TMNA.2018.026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12775/TMNA.2018.026" target="_blank" >10.12775/TMNA.2018.026</a>
Alternative languages
Result language
angličtina
Original language name
Global existence of a diffusion limit with damping for the compressible radiative Euler system coupled to an electromagnetic field
Original language description
We study the Cauchy problem for a system of equations corresponding to a singular limit of radiative hydrodynamics, namely the 3D radiative compressible Euler system coupled to an electromagnetic field through the MHD approximation. Assuming the presence of damping together with suitable smallness hypotheses for the data, we prove that this problem admits a unique global smooth solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topological Methods in Nonlinear Analysis
ISSN
1230-3429
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
25
Pages from-to
285-309
UT code for WoS article
000445937900014
EID of the result in the Scopus database
2-s2.0-85055153671