All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Symmetrically separated sequences in the unit sphere of a Banach space

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00494452" target="_blank" >RIV/67985840:_____/18:00494452 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/18:00324868

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jfa.2018.01.008" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2018.01.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2018.01.008" target="_blank" >10.1016/j.jfa.2018.01.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Symmetrically separated sequences in the unit sphere of a Banach space

  • Original language description

    We prove the symmetric version of Kottman's theorem, that is to say, we demonstrate that the unit sphere of an infinite-dimensional Banach space contains an infinite subset A with the property that ... for distinct elements x,y in A, thereby answering a question of J.M.F. Castillo. In the case where X contains an infinite-dimensional separable dual space or an unconditional basic sequence, the set A may be chosen in a way that ... for some epsilon>0 and distinct x,y in A. Under additional structural properties of X, such as non-trivial cotype, we obtain quantitative estimates for the said epsilon. Certain renorming results are also presented.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

  • Volume of the periodical

    275

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    3148-3168

  • UT code for WoS article

    000447961100006

  • EID of the result in the Scopus database

    2-s2.0-85040747352