Symmetrically separated sequences in the unit sphere of a Banach space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00494452" target="_blank" >RIV/67985840:_____/18:00494452 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/18:00324868
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2018.01.008" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2018.01.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2018.01.008" target="_blank" >10.1016/j.jfa.2018.01.008</a>
Alternative languages
Result language
angličtina
Original language name
Symmetrically separated sequences in the unit sphere of a Banach space
Original language description
We prove the symmetric version of Kottman's theorem, that is to say, we demonstrate that the unit sphere of an infinite-dimensional Banach space contains an infinite subset A with the property that ... for distinct elements x,y in A, thereby answering a question of J.M.F. Castillo. In the case where X contains an infinite-dimensional separable dual space or an unconditional basic sequence, the set A may be chosen in a way that ... for some epsilon>0 and distinct x,y in A. Under additional structural properties of X, such as non-trivial cotype, we obtain quantitative estimates for the said epsilon. Certain renorming results are also presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
275
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
3148-3168
UT code for WoS article
000447961100006
EID of the result in the Scopus database
2-s2.0-85040747352