Vortex-identification methods from a different perspective
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00496425" target="_blank" >RIV/67985840:_____/18:00496425 - isvavai.cz</a>
Alternative codes found
RIV/67985874:_____/18:00496425
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Vortex-identification methods from a different perspective
Original language description
A more universal classification of vortex-identification methods starts with the basic fluid-mechanical approach adopted: Lagrangian or Eulerian. Eulerian methods can be further sub-classified as local (pointwise) or non-local. The Eulerian local methods aim either at the vortex volumetric region (region-type schemes) or at the vortexcore skeleton (line-type schemes). Most of the Eulerian region-type methods (including some Lagrangian) are based on one vortex feature to derive a yes/no criterion which may provide the intensity measure of local vortex motion inside the vortex region, however, no applicable quantitative information outside the vortex region. The present paper aims to distinguish and emphasize those vortex-identification tools which are simultaneously and adequately informative outside the vortex regions, that is, basically covering the whole flow domain and especially indicating regions of strong strain-rate or shearing. This is due to a certain duality property of criterial measures applied (Q-criterion, MZ-criterion) or due to a rational velocity-gradient analysis of a wider applicability (triple decomposition method, corotation/contrarotation scheme). The latter provide complex information at each point of the flow field while the former distinguish two or more qualitatively different non-overlapping flow regions. Some illustrative vortical-flow examples are included.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-09628S" target="_blank" >GA18-09628S: Advanced flow-field analysis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů