Mathematical theory of fluids in motion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00497778" target="_blank" >RIV/67985840:_____/18:00497778 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3103/S1055134418040016" target="_blank" >http://dx.doi.org/10.3103/S1055134418040016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3103/S1055134418040016" target="_blank" >10.3103/S1055134418040016</a>
Alternative languages
Result language
angličtina
Original language name
Mathematical theory of fluids in motion
Original language description
The goal of this paper is to present the recent development of mathematical fluid dynamics in the framework of classical continuum mechanics phenomenological models. In particular, we discuss the Navier–Stokes (viscous) and the Euler (inviscid) systems modeling the motion of a compressible fluid. The theory is developed from fundamental physical principles, the necessary mathematical tools introduced at the moment when needed. In particular, we discuss various concepts of solutions and their relevance in applications. Particular interest is devoted to well-posedness of the initial-value problems and their approximations including possibly certain numerical schemes.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Siberian Advances in Mathematics
ISSN
1055-1344
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
4
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
32
Pages from-to
233-264
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85057437705