All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mathematical theory of fluids in motion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00497778" target="_blank" >RIV/67985840:_____/18:00497778 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3103/S1055134418040016" target="_blank" >http://dx.doi.org/10.3103/S1055134418040016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3103/S1055134418040016" target="_blank" >10.3103/S1055134418040016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mathematical theory of fluids in motion

  • Original language description

    The goal of this paper is to present the recent development of mathematical fluid dynamics in the framework of classical continuum mechanics phenomenological models. In particular, we discuss the Navier–Stokes (viscous) and the Euler (inviscid) systems modeling the motion of a compressible fluid. The theory is developed from fundamental physical principles, the necessary mathematical tools introduced at the moment when needed. In particular, we discuss various concepts of solutions and their relevance in applications. Particular interest is devoted to well-posedness of the initial-value problems and their approximations including possibly certain numerical schemes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Siberian Advances in Mathematics

  • ISSN

    1055-1344

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    32

  • Pages from-to

    233-264

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85057437705