Frölicher-Nijenhuis cohomology on G2 - and Spin(7)-manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00497780" target="_blank" >RIV/67985840:_____/18:00497780 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0129167X18500751" target="_blank" >http://dx.doi.org/10.1142/S0129167X18500751</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129167X18500751" target="_blank" >10.1142/S0129167X18500751</a>
Alternative languages
Result language
angličtina
Original language name
Frölicher-Nijenhuis cohomology on G2 - and Spin(7)-manifolds
Original language description
In this paper, we show that a parallel differential form Ψ of even degree on a Riemannian manifold allows to define a natural differential both on Ω*(M) and Ω*(M,TM), defined via the Frölicher–Nijenhuis bracket. For instance, on a Kähler manifold, these operators are the complex differential and the Dolbeault differential, respectively. We investigate this construction when taking the differential with respect to the canonical parallel 4-form on a G2- and Spin(7)-manifold, respectively. We calculate the cohomology groups of Ω*(M) and give a partial description of the cohomology of Ω*(M,TM).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Mathematics
ISSN
0129-167X
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
12
Country of publishing house
SG - SINGAPORE
Number of pages
36
Pages from-to
—
UT code for WoS article
000452170400002
EID of the result in the Scopus database
2-s2.0-85055677217