All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Frölicher-Nijenhuis cohomology on G2 - and Spin(7)-manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00497780" target="_blank" >RIV/67985840:_____/18:00497780 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1142/S0129167X18500751" target="_blank" >http://dx.doi.org/10.1142/S0129167X18500751</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0129167X18500751" target="_blank" >10.1142/S0129167X18500751</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Frölicher-Nijenhuis cohomology on G2 - and Spin(7)-manifolds

  • Original language description

    In this paper, we show that a parallel differential form Ψ of even degree on a Riemannian manifold allows to define a natural differential both on Ω*(M) and Ω*(M,TM), defined via the Frölicher–Nijenhuis bracket. For instance, on a Kähler manifold, these operators are the complex differential and the Dolbeault differential, respectively. We investigate this construction when taking the differential with respect to the canonical parallel 4-form on a G2- and Spin(7)-manifold, respectively. We calculate the cohomology groups of Ω*(M) and give a partial description of the cohomology of Ω*(M,TM).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Mathematics

  • ISSN

    0129-167X

  • e-ISSN

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    36

  • Pages from-to

  • UT code for WoS article

    000452170400002

  • EID of the result in the Scopus database

    2-s2.0-85055677217