Property (T), finite-dimensional representations, and generic representations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00498908" target="_blank" >RIV/67985840:_____/19:00498908 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/jgth-2018-0030" target="_blank" >http://dx.doi.org/10.1515/jgth-2018-0030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/jgth-2018-0030" target="_blank" >10.1515/jgth-2018-0030</a>
Alternative languages
Result language
angličtina
Original language name
Property (T), finite-dimensional representations, and generic representations
Original language description
Let G be a discrete group with Property (T). It is a standard fact that, in a unitary representation of G on a Hilbert space H {mathcal{H}}, almost invariant vectors are close to invariant vectors, in a quantitative way. We begin by showing that, if a unitary representation has some vector whose coefficient function is close to a coefficient function of some finite-dimensional unitary representation σ, then the vector is close to a sub-representation isomorphic to σ: this makes quantitative a result of P. S. Wang. We use that to give a new proof of a result by D. Kerr, H. Li and M. Pichot, that a group G with Property (T) and such that C ∗(G) {C^{∗}(G)} is residually finite-dimensional, admits a unitary representation which is generic (i.e. the orbit of this representation in Rep(G, H) {Rep(G,mathcal{H})} under the unitary group U(H) {U(mathcal{H})} is comeager). We also show that, under the same assumptions, the set of representations equivalent to a Koopman representation is comeager in Rep(G, H) {mathrm{Rep}(G,mathcal{H})}.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Group Theory
ISSN
1433-5883
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
1-13
UT code for WoS article
000454602000001
EID of the result in the Scopus database
2-s2.0-85052713220