All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Property (T), finite-dimensional representations, and generic representations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00498908" target="_blank" >RIV/67985840:_____/19:00498908 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1515/jgth-2018-0030" target="_blank" >http://dx.doi.org/10.1515/jgth-2018-0030</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/jgth-2018-0030" target="_blank" >10.1515/jgth-2018-0030</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Property (T), finite-dimensional representations, and generic representations

  • Original language description

    Let G be a discrete group with Property (T). It is a standard fact that, in a unitary representation of G on a Hilbert space H {mathcal{H}}, almost invariant vectors are close to invariant vectors, in a quantitative way. We begin by showing that, if a unitary representation has some vector whose coefficient function is close to a coefficient function of some finite-dimensional unitary representation σ, then the vector is close to a sub-representation isomorphic to σ: this makes quantitative a result of P. S. Wang. We use that to give a new proof of a result by D. Kerr, H. Li and M. Pichot, that a group G with Property (T) and such that C ∗(G) {C^{∗}(G)} is residually finite-dimensional, admits a unitary representation which is generic (i.e. the orbit of this representation in Rep(G, H) {Rep(G,mathcal{H})} under the unitary group U(H) {U(mathcal{H})} is comeager). We also show that, under the same assumptions, the set of representations equivalent to a Koopman representation is comeager in Rep(G, H) {mathrm{Rep}(G,mathcal{H})}.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Group Theory

  • ISSN

    1433-5883

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000454602000001

  • EID of the result in the Scopus database

    2-s2.0-85052713220