Reproducing kernel functions and asymptotic expansions on Jordan-Kepler manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504180" target="_blank" >RIV/67985840:_____/19:00504180 - isvavai.cz</a>
Alternative codes found
RIV/47813059:19610/19:A0000044
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2019.03.001" target="_blank" >http://dx.doi.org/10.1016/j.aim.2019.03.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2019.03.001" target="_blank" >10.1016/j.aim.2019.03.001</a>
Alternative languages
Result language
angličtina
Original language name
Reproducing kernel functions and asymptotic expansions on Jordan-Kepler manifolds
Original language description
We study the complex geometry of generalized Kepler manifolds, defined in Jordan theoretic terms, introduce Hilbert spaces of holomorphic functions defined by radial measures, and find the complete asymptotic expansion of the corresponding reproducing kernels for Kähler potentials, both in the flat and bounded setting.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-25995S" target="_blank" >GA16-25995S: Function theory and operator theory in Bergman spaces and their applications II</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
347
Issue of the periodical within the volume
30 April
Country of publishing house
US - UNITED STATES
Number of pages
47
Pages from-to
780-826
UT code for WoS article
000464091600016
EID of the result in the Scopus database
2-s2.0-85062461577