All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reproducing kernel functions and asymptotic expansions on Jordan-Kepler manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504180" target="_blank" >RIV/67985840:_____/19:00504180 - isvavai.cz</a>

  • Alternative codes found

    RIV/47813059:19610/19:A0000044

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aim.2019.03.001" target="_blank" >http://dx.doi.org/10.1016/j.aim.2019.03.001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2019.03.001" target="_blank" >10.1016/j.aim.2019.03.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reproducing kernel functions and asymptotic expansions on Jordan-Kepler manifolds

  • Original language description

    We study the complex geometry of generalized Kepler manifolds, defined in Jordan theoretic terms, introduce Hilbert spaces of holomorphic functions defined by radial measures, and find the complete asymptotic expansion of the corresponding reproducing kernels for Kähler potentials, both in the flat and bounded setting.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-25995S" target="_blank" >GA16-25995S: Function theory and operator theory in Bergman spaces and their applications II</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    347

  • Issue of the periodical within the volume

    30 April

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    47

  • Pages from-to

    780-826

  • UT code for WoS article

    000464091600016

  • EID of the result in the Scopus database

    2-s2.0-85062461577