Free sequences in P(omega)/fin
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508629" target="_blank" >RIV/67985840:_____/19:00508629 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00153-019-00675-w" target="_blank" >http://dx.doi.org/10.1007/s00153-019-00675-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-019-00675-w" target="_blank" >10.1007/s00153-019-00675-w</a>
Alternative languages
Result language
angličtina
Original language name
Free sequences in P(omega)/fin
Original language description
We investigate maximal free sequences in the Boolean algebra P(ω) / fin , as defined by Monk (Comment Math Univ Carol 52(4):593–610, 2011). We provide some information on the general structure of these objects and we are particularly interested in the minimal cardinality of a free sequence, a cardinal characteristic of the continuum denoted f. Answering a question of Monk, we demonstrate the consistency of ω 1 = i= f< u= ω 2 . In fact, this consistency is demonstrated in the model of Shelah for i< u (Shelah in Arch Math Log 31(6):433–443, 1992). Our paper provides a streamlined and mostly self contained presentation of this construction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
7-8
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
1035-1051
UT code for WoS article
000485978400015
EID of the result in the Scopus database
2-s2.0-85065426393