All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Polyharmonic splines generated by multivariate smooth interpolation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00509204" target="_blank" >RIV/67985840:_____/19:00509204 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.camwa.2019.04.018" target="_blank" >http://dx.doi.org/10.1016/j.camwa.2019.04.018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.camwa.2019.04.018" target="_blank" >10.1016/j.camwa.2019.04.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Polyharmonic splines generated by multivariate smooth interpolation

  • Original language description

    Polyharmonic splines of order m satisfy the polyharmonic equation of order m in n variables. Moreover, if employed as basis functions for interpolation they are radial functions. We are concerned with the problem of construction of the smooth interpolation formula presented as the minimizer of suitable functionals subject to interpolation constraints for n≥1. This is the principal motivation of the paper. We show a particular procedure for determining the interpolation formula that in a natural way leads to a linear combination of polyharmonic splines of a fixed order, possibly complemented with lower order polynomial terms. If it is advantageous for the interpolant in the problem solved to be a polyharmonic spline we can construct such an interpolant directly using the multivariate smooth approximation technique. The smoothness of the spline can be a priori chosen. Smooth interpolation can be very useful e.g. in signal processing, computer aided geometric design or construction of geographic information systems. A 1D computational example is presented.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-09628S" target="_blank" >GA18-09628S: Advanced flow-field analysis</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computers & Mathematics With Applications

  • ISSN

    0898-1221

  • e-ISSN

  • Volume of the periodical

    78

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    3067-3076

  • UT code for WoS article

    000491624900015

  • EID of the result in the Scopus database

    2-s2.0-85065032844