Matching polytons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00512063" target="_blank" >RIV/67985840:_____/19:00512063 - isvavai.cz</a>
Result on the web
<a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i4p38" target="_blank" >https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i4p38</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Matching polytons
Original language description
Hladký, Hu, and Piguet [Tilings in graphons, preprint] introduced the notions of matching and fractional vertex covers in graphons. These are counterparts to the corresponding notions in finite graphs. Combinatorial optimization studies the structure of the matching polytope and the fractional vertex cover polytope of a graph. Here, in analogy, we initiate the study of the structure of the set of all matchings and of all fractional vertex covers in a graphon. We call these sets the matching polyton and the fractional vertex cover polyton. We also study properties of matching polytons and fractional vertex cover polytons along convergent sequences of graphons.As an auxiliary tool of independent interest, we prove that a graphon is r -partite if and only if it contains no graph of chromatic number r+1. This in turn gives a characterization of bipartite graphons as those having a symmetric spectrum.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
P4.38
UT code for WoS article
000506405400007
EID of the result in the Scopus database
2-s2.0-85075528294