L∞-algebras, the BV formalism, and classical fields: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00518730" target="_blank" >RIV/67985840:_____/19:00518730 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/prop.201910025" target="_blank" >http://dx.doi.org/10.1002/prop.201910025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/prop.201910025" target="_blank" >10.1002/prop.201910025</a>
Alternative languages
Result language
angličtina
Original language name
L∞-algebras, the BV formalism, and classical fields: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory
Original language description
We summarise some of our recent works on (Formula presented.) -algebras and quasi-groups with regard to higher principal bundles and their applications in twistor theory and gauge theory. In particular, after a lightning review of (Formula presented.) -algebras, we discuss their Maurer–Cartan theory and explain that any classical field theory admitting an action can be reformulated in this context with the help of the Batalin–Vilkovisky formalism. As examples, we explore higher Chern–Simons theory and Yang–Mills theory. We also explain how these ideas can be combined with those of twistor theory to formulate maximally superconformal gauge theories in four and six dimensions by means of (Formula presented.) -quasi-isomorphisms, and we propose a twistor space action.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-07776S" target="_blank" >GA18-07776S: Higher structures in algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fortschritte der Physik - Progress of Physics
ISSN
0015-8208
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
8-9
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
1910025
UT code for WoS article
000486266200026
EID of the result in the Scopus database
2-s2.0-85068168683