All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Critical observability for automata and Petri nets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00519325" target="_blank" >RIV/67985840:_____/20:00519325 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/20:73601575

  • Result on the web

    <a href="https://doi.org/10.1109/TAC.2019.2912484" target="_blank" >https://doi.org/10.1109/TAC.2019.2912484</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TAC.2019.2912484" target="_blank" >10.1109/TAC.2019.2912484</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Critical observability for automata and Petri nets

  • Original language description

    Critical observability is a property of cyber-physical systems to detect whether the current state belongs to a set of critical states. In safety-critical applications, critical states model operations that may be unsafe or of a particular interest. De Santis et al. introduced critical observability for linear switching systems, and Pola et al. adapted it for discrete-event systems, focusing on algorithmic complexity. We study the computational complexity of deciding critical observability for systems modeled as (networks of) finite-state automata and Petri nets. We show that deciding critical observability is (i) NL-complete for finite automata, (ii) PSPACE-complete for networks of finite automata, and (iii) undecidable for labeled Petri nets, but becoming decidable if the set of critical states (markings) is finite or co-finite, in which case the problem is as hard as the non-reachability problem for Petri nets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GC19-06175J" target="_blank" >GC19-06175J: Compositional Methods for the Control of Concurrent Timed Discrete-Event Systems</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Automatic Control

  • ISSN

    0018-9286

  • e-ISSN

  • Volume of the periodical

    65

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    341-346

  • UT code for WoS article

    000506851100029

  • EID of the result in the Scopus database

    2-s2.0-85077798949