All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The uniqueness of the solution of a nonlinear heat conduction problem under Hölder’s continuity condition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00520539" target="_blank" >RIV/67985840:_____/20:00520539 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.aml.2020.106214" target="_blank" >https://doi.org/10.1016/j.aml.2020.106214</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aml.2020.106214" target="_blank" >10.1016/j.aml.2020.106214</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The uniqueness of the solution of a nonlinear heat conduction problem under Hölder’s continuity condition

  • Original language description

    We investigate a stationary nonlinear heat conduction problem in which heat conductivities depend on temperature. It is known that such problem need not have a unique solution even when the conductivity coefficients are continuous. In this paper we prove that for 1/2-Hölder continuous coefficients the uniqueness of the weak solution is guaranteed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Mathematics Letters

  • ISSN

    0893-9659

  • e-ISSN

  • Volume of the periodical

    103

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    106214

  • UT code for WoS article

    000517664700057

  • EID of the result in the Scopus database

    2-s2.0-85077951146