Inverse problems for symmetric doubly stochastic matrices whose Suleimanova spectra are bounded below by 1/2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00521939" target="_blank" >RIV/67985840:_____/20:00521939 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.laa.2020.01.029" target="_blank" >https://doi.org/10.1016/j.laa.2020.01.029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2020.01.029" target="_blank" >10.1016/j.laa.2020.01.029</a>
Alternative languages
Result language
angličtina
Original language name
Inverse problems for symmetric doubly stochastic matrices whose Suleimanova spectra are bounded below by 1/2
Original language description
A new sufficient condition for a list of real numbers to be the spectrum of a symmetric doubly stochastic matrix is presented, this is a contribution to the classical spectral inverse problem for symmetric doubly stochastic matrices that is still open in its full generality. It is proved that whenever λ2,…,λn are non-positive real numbers with 1+λ2+…+λn⩾1/2, then there exists a symmetric, doubly stochastic matrix whose spectrum is precisely (1,λ2,…,λn). We point out that this criterion is incomparable to the classical sufficient conditions due to Perfect–Mirsky, Soules, and their modern refinements due to Nader et al. We also provide some examples and applications of our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-07129Y" target="_blank" >GJ19-07129Y: Linear-analysis techniques in operator algebras and vice versa</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
592
Issue of the periodical within the volume
May
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
175-187
UT code for WoS article
000519669300009
EID of the result in the Scopus database
2-s2.0-85078284646