All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A non-stable C*-algebra with an elementary essential composition series

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523592" target="_blank" >RIV/67985840:_____/20:00523592 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.ams.org/journals/proc/2020-148-05/S0002-9939-2019-14814-0/" target="_blank" >https://www.ams.org/journals/proc/2020-148-05/S0002-9939-2019-14814-0/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/14814" target="_blank" >10.1090/proc/14814</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A non-stable C*-algebra with an elementary essential composition series

  • Original language description

    A $ C^*$-algebra $ mathcal {A}$ is said to be stable if it is isomorphic to $ mathcal {A} otimes mathcal {K}(ell _2)$. Hjelmborg and Rørdam have shown that countable inductive limits of separable stable $ C^*$-algebras are stable. We show that this is no longer true in the nonseparable context even for the most natural case of an uncountable inductive limit of an increasing chain of separable stable and AF ideals: we construct a GCR, AF (in fact, scattered) subalgebra $ mathcal {A}$ of $ mathcal {B}(ell _2)$, which is the inductive limit of length $ omega _1$ of its separable stable ideals $ mathcal {I}_alpha $ ( $ alpha <omega _1$) satisfying $ mathcal {I}_{alpha +1}/mathcal {I}_alpha cong mathcal {K}(ell _2)$ for each $ alpha <omega _1$, while $ mathcal {A}$ is not stable. The sequence $ (mathcal {I}_alpha )_{alpha leq omega _1}$ is the GCR composition series of $ mathcal {A}$ which in this case coincides with the Cantor-Bendixson composition series as a scattered $ C^*$-algebra. $ mathcal {A}$ has the property that all of its proper two-sided ideals are listed as $ mathcal {I}_alpha $'s for some $ alpha <omega _1$, and therefore the family of stable ideals of $ mathcal {A}$ has no maximal element. nBy taking $ mathcal {A}'=mathcal {A}otimes mathcal {K}(ell _2)$ we obtain a stable $ C^*$-algebra with analogous composition series $ (mathcal {J}_alpha )_{alpha <omega _1}$ whose ideals $ mathcal {J}_alpha $ are isomorphic to $ mathcal {I}_alpha $ for each $ alpha <omega _1$. In particular, there are nonisomorphic scattered $ C^*$-algebras whose GCR composition series $ (mathcal {I}_alpha )_{alpha leq omega _1}$ satisfy $ mathcal {I}_{alpha +1}/mathcal {I}_alpha cong mathcal {K}(ell _2)$ for all $ alpha <omega _1$, for which the composition series differs first at $ alpha =omega _1$.n

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    148

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    2201-2215

  • UT code for WoS article

    000521585500035

  • EID of the result in the Scopus database

    2-s2.0-85082960009