Cops-Robber games and the resolution of Tseitin formulas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523857" target="_blank" >RIV/67985840:_____/20:00523857 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3378667" target="_blank" >https://doi.org/10.1145/3378667</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3378667" target="_blank" >10.1145/3378667</a>
Alternative languages
Result language
angličtina
Original language name
Cops-Robber games and the resolution of Tseitin formulas
Original language description
We characterize several complexity measures for the resolution of Tseitin formulas in terms of a two person cop-robber game. Our game is a slight variation of the one Seymour and Thomas used in order to characterize the tree-width parameter. For any undirected graph, by counting the number of cops needed in our game in order to catch a robber in it, we are able to exactly characterize the width, variable space, and depth measures for the resolution of the Tseitin formula corresponding to that graph. We also give an exact game characterization of resolution variable space for any formula.nWe show that our game can be played in a monotone way. This implies that the associated resolution measures on Tseitin formulas correspond exactly to those under the restriction of Davis-Putnam resolution, implying that this kind of resolution is optimal on Tseitin formulas for all the considered measures.nUsing our characterizations, we improve the existing complexity bounds for Tseitin formulas showing that resolution width, depth, and variable space coincide up to a logarithmic factor, and that variable space is bounded by the clause space times a logarithmic factor.n
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACM Transactions on Computation Theory
ISSN
1942-3454
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
9
UT code for WoS article
000583676000002
EID of the result in the Scopus database
2-s2.0-85085257046