Recursive functions and existentially closed structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524146" target="_blank" >RIV/67985840:_____/20:00524146 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0219061320500026" target="_blank" >https://doi.org/10.1142/S0219061320500026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219061320500026" target="_blank" >10.1142/S0219061320500026</a>
Alternative languages
Result language
angličtina
Original language name
Recursive functions and existentially closed structures
Original language description
The purpose of this paper is to clarify the relationship between various conditions implying essential undecidability: our main result is that there exists a theory T in which all partially recursive functions are representable, yet T does not interpret Robinson's theory R. To this end, we borrow tools from model theory-specifically, we investigate model-theoretic properties of the model completion of the empty theory in a language with function symbols. We obtain a certain characterization of theories interpretable in existential theories in the process.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Logic
ISSN
0219-0613
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
1
Country of publishing house
SG - SINGAPORE
Number of pages
52
Pages from-to
2050002
UT code for WoS article
000535160700005
EID of the result in the Scopus database
2-s2.0-85070808340