All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The role of pressure in the theory of weak solutions to the Navier-Stokes equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524152" target="_blank" >RIV/67985840:_____/20:00524152 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-39639-8_4" target="_blank" >http://dx.doi.org/10.1007/978-3-030-39639-8_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-39639-8_4" target="_blank" >10.1007/978-3-030-39639-8_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The role of pressure in the theory of weak solutions to the Navier-Stokes equations

  • Original language description

    Sections 1 and 2 contain an introduction, notation and definitions and basic properties of used function spaces and operators. A pressure, associated with a weak solution to the Navier-Stokes equations for incompressible fluid, is constructed in section 3. The interior regularity of the pressure in regions, where the velocity satisfies Serrin's integrability conditions, is studied in section 4. Finally, section 5 is devoted to criteria of regularity for weak solutions to the Navier-Stokes equations, formulated in terms of the pressure.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Fluids Under Pressure

  • ISBN

    978-3-030-39638-1

  • Number of pages of the result

    68

  • Pages from-to

    349-416

  • Number of pages of the book

    638

  • Publisher name

    Springer

  • Place of publication

    Basel

  • UT code for WoS chapter