Permutads via operadic categories, and the hidden associahedron
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524776" target="_blank" >RIV/67985840:_____/20:00524776 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jcta.2020.105277" target="_blank" >https://doi.org/10.1016/j.jcta.2020.105277</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2020.105277" target="_blank" >10.1016/j.jcta.2020.105277</a>
Alternative languages
Result language
angličtina
Original language name
Permutads via operadic categories, and the hidden associahedron
Original language description
The present article exploits the fact that permutads (aka shuffle algebras) are algebras over a terminal operad in a certain operadic category Per. In the first, classical part we formulate and prove a claim envisaged by Loday and Ronco that the cellular chains of the permutohedra form the minimal model of the terminal permutad which is moreover, in the sense we define, self-dual and Koszul. In the second part we study Koszulity of Per-operads. Among other things we prove that the terminal Per-operad is Koszul self-dual. We then describe strongly homotopy permutads as algebras of its minimal model. Our paper shall advertise analogous future results valid in general operadic categories, and the prominent rôle of operadic (op)fibrations in the related theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-07776S" target="_blank" >GA18-07776S: Higher structures in algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. A
ISSN
0097-3165
e-ISSN
—
Volume of the periodical
175
Issue of the periodical within the volume
October
Country of publishing house
US - UNITED STATES
Number of pages
40
Pages from-to
105277
UT code for WoS article
000546725100013
EID of the result in the Scopus database
2-s2.0-85085277439