All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

sigma-lacunary actions of Polish groups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00525501" target="_blank" >RIV/67985840:_____/20:00525501 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1090/proc/14982" target="_blank" >https://doi.org/10.1090/proc/14982</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/14982" target="_blank" >10.1090/proc/14982</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    sigma-lacunary actions of Polish groups

  • Original language description

    We show that every essentially countable orbit equivalence relation induced by a continuous action of a Polish group on a Polish space is sigma-lacunary. In combination with Gao and Jackson [Invent. Math. 201 (2015), pp. 309-383] we obtain a straightforward proof of the result from Ding and Gao [Adv. Math. 307 (2017), pp. 312-343] that every essentially countable equivalence relation that is induced by an action of an abelian nonarchimedean Polish group is Borel reducible to E-0, i.e., it is essentially hyperfinite.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF17-33849L" target="_blank" >GF17-33849L: Filters, Ultrafilters and Connections with Forcing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    148

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    3583-3589

  • UT code for WoS article

    000541456100033

  • EID of the result in the Scopus database

    2-s2.0-85090791039