sigma-lacunary actions of Polish groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00525501" target="_blank" >RIV/67985840:_____/20:00525501 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1090/proc/14982" target="_blank" >https://doi.org/10.1090/proc/14982</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/14982" target="_blank" >10.1090/proc/14982</a>
Alternative languages
Result language
angličtina
Original language name
sigma-lacunary actions of Polish groups
Original language description
We show that every essentially countable orbit equivalence relation induced by a continuous action of a Polish group on a Polish space is sigma-lacunary. In combination with Gao and Jackson [Invent. Math. 201 (2015), pp. 309-383] we obtain a straightforward proof of the result from Ding and Gao [Adv. Math. 307 (2017), pp. 312-343] that every essentially countable equivalence relation that is induced by an action of an abelian nonarchimedean Polish group is Borel reducible to E-0, i.e., it is essentially hyperfinite.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF17-33849L" target="_blank" >GF17-33849L: Filters, Ultrafilters and Connections with Forcing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
148
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
3583-3589
UT code for WoS article
000541456100033
EID of the result in the Scopus database
2-s2.0-85090791039