Weighted inequalities for discrete iterated Hardy operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531371" target="_blank" >RIV/67985840:_____/20:00531371 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10421888
Result on the web
<a href="https://doi.org/10.1007/s00009-020-01526-2" target="_blank" >https://doi.org/10.1007/s00009-020-01526-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00009-020-01526-2" target="_blank" >10.1007/s00009-020-01526-2</a>
Alternative languages
Result language
angličtina
Original language name
Weighted inequalities for discrete iterated Hardy operators
Original language description
We characterize a three-weight inequality for an iterated discrete Hardy-type operator. In the case when the domain space is a weighted space l^p with p∈ (0,1], we develop characterizations which enable us to reduce the problem to another one with p=1. This, in turn, makes it possible to establish an equivalence of the weighted discrete inequality to an appropriate inequality for iterated Hardy-type operators acting on measurable functions defined on R, for all cases of involved positive exponents.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mediterranean Journal of Mathematics
ISSN
1660-5446
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
132
UT code for WoS article
000555466700001
EID of the result in the Scopus database
2-s2.0-85088787750