Convergence and error estimates for a finite difference scheme for the multi-dimensional compressible Navier-Stokes system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531380" target="_blank" >RIV/67985840:_____/20:00531380 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10915-020-01278-x" target="_blank" >https://doi.org/10.1007/s10915-020-01278-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10915-020-01278-x" target="_blank" >10.1007/s10915-020-01278-x</a>
Alternative languages
Result language
angličtina
Original language name
Convergence and error estimates for a finite difference scheme for the multi-dimensional compressible Navier-Stokes system
Original language description
We prove convergence of a finite difference approximation of the compressible Navier–Stokes system towards the strong solution in Rd, d= 2 , 3 , for the adiabatic coefficient γ> 1. Employing the relative energy functional, we find a convergence rate which is uniform in terms of the discretization parameters for γ> d/ 2. All results are unconditional in the sense that we have no assumptions on the regularity nor boundedness of the numerical solution. We also provide numerical experiments to validate the theoretical convergence rate. To the best of our knowledge this work contains the first unconditional result on the convergence of a finite difference scheme for the unsteady compressible Navier–Stokes system in multiple dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Scientific Computing
ISSN
0885-7474
e-ISSN
—
Volume of the periodical
84
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
39
Pages from-to
25
UT code for WoS article
000552410600003
EID of the result in the Scopus database
2-s2.0-85088154081