All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convergence and error estimates for a finite difference scheme for the multi-dimensional compressible Navier-Stokes system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531380" target="_blank" >RIV/67985840:_____/20:00531380 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s10915-020-01278-x" target="_blank" >https://doi.org/10.1007/s10915-020-01278-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10915-020-01278-x" target="_blank" >10.1007/s10915-020-01278-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convergence and error estimates for a finite difference scheme for the multi-dimensional compressible Navier-Stokes system

  • Original language description

    We prove convergence of a finite difference approximation of the compressible Navier–Stokes system towards the strong solution in Rd, d= 2 , 3 , for the adiabatic coefficient γ> 1. Employing the relative energy functional, we find a convergence rate which is uniform in terms of the discretization parameters for γ> d/ 2. All results are unconditional in the sense that we have no assumptions on the regularity nor boundedness of the numerical solution. We also provide numerical experiments to validate the theoretical convergence rate. To the best of our knowledge this work contains the first unconditional result on the convergence of a finite difference scheme for the unsteady compressible Navier–Stokes system in multiple dimensions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Scientific Computing

  • ISSN

    0885-7474

  • e-ISSN

  • Volume of the periodical

    84

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

    25

  • UT code for WoS article

    000552410600003

  • EID of the result in the Scopus database

    2-s2.0-85088154081