All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Algebraic Structure of String Field Theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532941" target="_blank" >RIV/67985840:_____/20:00532941 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10423861

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-53056-3" target="_blank" >http://dx.doi.org/10.1007/978-3-030-53056-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-53056-3" target="_blank" >10.1007/978-3-030-53056-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Algebraic Structure of String Field Theory

  • Original language description

    This book gives a modern presentation of modular operands and their role in string field theory. The authors aim to outline the arguments from the perspective of homotopy algebras and their operadic origin. Part I reviews string field theory from the point of view of homotopy algebras, including A-infinity algebras, loop homotopy (quantum L-infinity) and IBL-infinity algebras governing its structure. Within this framework, the covariant construction of a string field theory naturally emerges as composition of two morphisms of particular odd modular operads. This part is intended primarily for researchers and graduate students who are interested in applications of higher algebraic structures to strings and quantum field theory. Part II contains a comprehensive treatment of the mathematical background on operads and homotopy algebras in a broader context, which should appeal also to mathematicians who are not familiar with string theory.

  • Czech name

  • Czech description

Classification

  • Type

    B - Specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-07776S" target="_blank" >GA18-07776S: Higher structures in algebra, geometry and mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • ISBN

    978-3-030-53054-9

  • Number of pages

    221

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS book