K-convergence as a new tool in numerical analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00533370" target="_blank" >RIV/67985840:_____/20:00533370 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/imanum/drz045" target="_blank" >https://doi.org/10.1093/imanum/drz045</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/drz045" target="_blank" >10.1093/imanum/drz045</a>
Alternative languages
Result language
angličtina
Original language name
K-convergence as a new tool in numerical analysis
Original language description
We adapt the concept of K-convergence of Young measures to the sequences of approximate solutions resulting from numerical schemes. We obtain new results on pointwise convergence of numerical solutions in the case when solutions of the limit continuous problem possess minimal regularity. We apply the abstract theory to a finite volume method for the isentropic Euler system describing the motion of a compressible inviscid fluid. The result can be seen as a nonlinear version of the fundamental Lax equivalence theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
29
Pages from-to
2227-2255
UT code for WoS article
000610489200004
EID of the result in the Scopus database
2-s2.0-85087023422