An algebraic approach to the Weyl groupoid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00534624" target="_blank" >RIV/67985840:_____/21:00534624 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.1016/j.jalgebra.2020.10.010" target="_blank" >https://dx.doi.org/10.1016/j.jalgebra.2020.10.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2020.10.010" target="_blank" >10.1016/j.jalgebra.2020.10.010</a>
Alternative languages
Result language
angličtina
Original language name
An algebraic approach to the Weyl groupoid
Original language description
We unify the Kumjian-Renault Weyl groupoid construction with the Lawson-Lenz version of Exel's tight groupoid construction. We do this by utilising only a weak algebraic fragment of the C*-algebra structure, namely its *-semigroup reduct. Fundamental properties like local compactness are also shown to remain valid in general classes of *-rings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
1090-266X
Volume of the periodical
568
Issue of the periodical within the volume
February
Country of publishing house
US - UNITED STATES
Number of pages
48
Pages from-to
193-240
UT code for WoS article
000594258900009
EID of the result in the Scopus database
2-s2.0-85095457611