Weak sequential stability for a nonlinear model of nematic electrolytes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00537016" target="_blank" >RIV/67985840:_____/21:00537016 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/dcdss.2020366" target="_blank" >http://dx.doi.org/10.3934/dcdss.2020366</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcdss.2020366" target="_blank" >10.3934/dcdss.2020366</a>
Alternative languages
Result language
angličtina
Original language name
Weak sequential stability for a nonlinear model of nematic electrolytes
Original language description
In this article we study a system of nonlinear PDEs modelling the electrokinetics of a nematic electrolyte material consisting of various ions species contained in a nematic liquid crystal. The evolution is described by a system coupling a Nernst-Planck system for the ions concentrations with a Maxwell's equation of electrostatics governing the evolution of the electrostatic potential, a Navier-Stokes equation for the velocity field, and a non-smooth Allen-Cahn type equation for the nematic director field. We focus on the two-species case and prove apriori estimates that provide a weak sequential stability result, the main step towards proving the existence of weak solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical systems - Series S
ISSN
1937-1632
e-ISSN
1937-1179
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
219-241
UT code for WoS article
000595659200012
EID of the result in the Scopus database
2-s2.0-85098963252