Nearly optimal scaling in the SR decomposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00537549" target="_blank" >RIV/67985840:_____/21:00537549 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.laa.2020.11.011" target="_blank" >https://doi.org/10.1016/j.laa.2020.11.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2020.11.011" target="_blank" >10.1016/j.laa.2020.11.011</a>
Alternative languages
Result language
angličtina
Original language name
Nearly optimal scaling in the SR decomposition
Original language description
In this paper we analyze the nearly optimal block diagonal scalings of the rows of one factor and the columns of the other factor in the triangular form of the SR decomposition. The result is a block generalization of the result of the van der Sluis about the almost optimal diagonal scalings of the general rectangular matrices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
1873-1856
Volume of the periodical
613
Issue of the periodical within the volume
March
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
295-319
UT code for WoS article
000608135900012
EID of the result in the Scopus database
2-s2.0-85097079103