All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Holomorphic relative Hopf modules over the irreducible quantum flag manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00539373" target="_blank" >RIV/67985840:_____/21:00539373 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/21:10420737

  • Result on the web

    <a href="https://doi.org/10.1007/s11005-020-01340-7" target="_blank" >https://doi.org/10.1007/s11005-020-01340-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11005-020-01340-7" target="_blank" >10.1007/s11005-020-01340-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Holomorphic relative Hopf modules over the irreducible quantum flag manifolds

  • Original language description

    We construct covariant q-deformed holomorphic structures for all finitely generated relative Hopf modules over the irreducible quantum flag manifolds endowed with their Heckenberger–Kolb calculi. In the classical limit, these reduce to modules of sections of holomorphic homogeneous vector bundles over irreducible flag manifolds. For the case of simple relative Hopf modules, we show that this covariant holomorphic structure is unique. This generalises earlier work of Majid, Khalkhali, Landi, and van Suijlekom for line modules of the Podleś sphere, and subsequent work of Khalkhali and Moatadelro for general quantum projective space.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Letters in Mathematical Physics

  • ISSN

    0377-9017

  • e-ISSN

    1573-0530

  • Volume of the periodical

    111

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    24

  • Pages from-to

    10

  • UT code for WoS article

    000613017100001

  • EID of the result in the Scopus database

    2-s2.0-85099920922