Holomorphic relative Hopf modules over the irreducible quantum flag manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00539373" target="_blank" >RIV/67985840:_____/21:00539373 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/21:10420737
Result on the web
<a href="https://doi.org/10.1007/s11005-020-01340-7" target="_blank" >https://doi.org/10.1007/s11005-020-01340-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11005-020-01340-7" target="_blank" >10.1007/s11005-020-01340-7</a>
Alternative languages
Result language
angličtina
Original language name
Holomorphic relative Hopf modules over the irreducible quantum flag manifolds
Original language description
We construct covariant q-deformed holomorphic structures for all finitely generated relative Hopf modules over the irreducible quantum flag manifolds endowed with their Heckenberger–Kolb calculi. In the classical limit, these reduce to modules of sections of holomorphic homogeneous vector bundles over irreducible flag manifolds. For the case of simple relative Hopf modules, we show that this covariant holomorphic structure is unique. This generalises earlier work of Majid, Khalkhali, Landi, and van Suijlekom for line modules of the Podleś sphere, and subsequent work of Khalkhali and Moatadelro for general quantum projective space.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Letters in Mathematical Physics
ISSN
0377-9017
e-ISSN
1573-0530
Volume of the periodical
111
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
24
Pages from-to
10
UT code for WoS article
000613017100001
EID of the result in the Scopus database
2-s2.0-85099920922