GPU-acceleration of the ELPA2 distributed eigensolver for dense symmetric and hermitian eigenproblems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00539376" target="_blank" >RIV/67985840:_____/21:00539376 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.cpc.2020.107808" target="_blank" >https://doi.org/10.1016/j.cpc.2020.107808</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cpc.2020.107808" target="_blank" >10.1016/j.cpc.2020.107808</a>
Alternative languages
Result language
angličtina
Original language name
GPU-acceleration of the ELPA2 distributed eigensolver for dense symmetric and hermitian eigenproblems
Original language description
The solution of eigenproblems is often a key computational bottleneck that limits the tractable system size of numerical algorithms, among them electronic structure theory in chemistry and in condensed matter physics. Large eigenproblems can easily exceed the capacity of a single compute node, thus must be solved on distributed-memory parallel computers. We here present GPU-oriented optimizations of the ELPA two-stage tridiagonalization eigensolver (ELPA2). On top of cuBLAS-based GPU offloading, we add a CUDA kernel to speed up the back-transformation of eigenvectors, which can be the computationally most expensive part of the two-stage tridiagonalization algorithm. We benchmark the performance of this GPU-accelerated eigensolver on two hybrid CPU–GPU architectures, namely a compute cluster based on Intel Xeon Gold CPUs and NVIDIA Volta GPUs, and the Summit supercomputer based on IBM POWER9 CPUs and NVIDIA Volta GPUs. Consistent with previous benchmarks on CPU-only architectures, the GPU-accelerated two-stage solver exhibits a parallel performance superior to the one-stage counterpart. Finally, we demonstrate the performance of the GPU-accelerated eigensolver developed in this work for routine semi-local KS-DFT calculations comprising thousands of atoms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Physics Communications
ISSN
0010-4655
e-ISSN
1879-2944
Volume of the periodical
262
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
107808
UT code for WoS article
000633365000004
EID of the result in the Scopus database
2-s2.0-85099623870