Modified equation for a class of explicit and implicit schemes solving one-dimensional advection problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00540783" target="_blank" >RIV/67985840:_____/21:00540783 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/21:00347816
Result on the web
<a href="https://doi.org/10.14311/AP.2021.61.0049" target="_blank" >https://doi.org/10.14311/AP.2021.61.0049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2021.61.0049" target="_blank" >10.14311/AP.2021.61.0049</a>
Alternative languages
Result language
angličtina
Original language name
Modified equation for a class of explicit and implicit schemes solving one-dimensional advection problem
Original language description
This paper presents the general modified equation for a family of finite-difference schemes solving one-dimensional advection equation. The whole family of explicit and implicit schemes working at two time-levels and having three point spatial support is considered. Some of the classical schemes (upwind, Lax-Friedrichs, Lax-Wendroff) are discussed as examples, showing the possible implications arising from the modified equation to the properties of the considered numerical methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Polytechnica
ISSN
1210-2709
e-ISSN
1805-2363
Volume of the periodical
61
Issue of the periodical within the volume
SI
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
49-58
UT code for WoS article
000618346400005
EID of the result in the Scopus database
2-s2.0-85101335019