All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Guaranteed a posteriori error bounds for low-rank tensor approximate solutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00541908" target="_blank" >RIV/67985840:_____/21:00541908 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1093/imanum/draa010" target="_blank" >https://doi.org/10.1093/imanum/draa010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imanum/draa010" target="_blank" >10.1093/imanum/draa010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Guaranteed a posteriori error bounds for low-rank tensor approximate solutions

  • Original language description

    We propose a guaranteed and fully computable upper bound on the energy norm of the error in low-rank tensor train (TT) approximate solutions of (possibly) high-dimensional reaction–diffusion problems. The error bound is obtained from Euler–Lagrange equations for a complementary flux reconstruction problem, which are solved in the low-rank TT representation using the block alternating linear scheme. This bound is guaranteed to be above the energy norm of the total error, including the discretization error, the tensor approximation error and the error in the solver of linear algebraic equations, although quadrature errors, in general, can pollute its evaluation. Numerical examples with the Poisson equation and the Schrödinger equation with the Henon–Heiles potential in up to 40 dimensions are presented to illustrate the efficiency of this approach.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IMA Journal of Numerical Analysis

  • ISSN

    0272-4979

  • e-ISSN

    1464-3642

  • Volume of the periodical

    41

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    27

  • Pages from-to

    1240-1266

  • UT code for WoS article

    000651815700014

  • EID of the result in the Scopus database

    2-s2.0-85116905135