Compatibility complex for black hole spacetimes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00543155" target="_blank" >RIV/67985840:_____/21:00543155 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00220-021-04078-y" target="_blank" >https://doi.org/10.1007/s00220-021-04078-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-021-04078-y" target="_blank" >10.1007/s00220-021-04078-y</a>
Alternative languages
Result language
angličtina
Original language name
Compatibility complex for black hole spacetimes
Original language description
The set of local gauge invariant quantities for linearized gravity on the Kerr spacetime presented by two of the authors (Aksteiner and Bäckdahl in Phys Rev Lett 121:051104, 2018) is shown to be complete. In particular, any gauge invariant quantity for linearized gravity on Kerr that is local and of finite order in derivatives can be expressed in terms of these gauge invariants and derivatives thereof. The proof is carried out by constructing a complete compatibility complex for the Killing operator, and demonstrating the equivalence of the gauge invariants from Aksteiner and Bäckdahl (Phys Rev Lett 121:051104, 2018) with the first compatibility operator from that complex.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-07776S" target="_blank" >GA18-07776S: Higher structures in algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
1432-0916
Volume of the periodical
384
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
30
Pages from-to
1585-1614
UT code for WoS article
000648236300001
EID of the result in the Scopus database
2-s2.0-85105479196