All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Strongly self-absorbing C*-algebras and Fraissé limits

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00543301" target="_blank" >RIV/67985840:_____/21:00543301 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1112/blms.12474" target="_blank" >https://doi.org/10.1112/blms.12474</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.12474" target="_blank" >10.1112/blms.12474</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Strongly self-absorbing C*-algebras and Fraissé limits

  • Original language description

    We show that the Fraïssé limit of a category of unital separable ????∗ -algebras which is sufficiently closed under tensor products of its objects and morphisms is strongly self-absorbing, given that it has approximately inner half-flip. We use this connection between Fraïssé limits and strongly self-absorbing ????∗ -algebras to give a rather elementary proof for the well-known fact that the Jiang–Su algebra is strongly self-absorbing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-05271Y" target="_blank" >GJ19-05271Y: Groups and their actions, operator algebras, and descriptive set theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

    1469-2120

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    937-955

  • UT code for WoS article

    000621113300001

  • EID of the result in the Scopus database

    2-s2.0-85101907814