All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On linear continuous operators between distinguished spaces Cp(X)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546784" target="_blank" >RIV/67985840:_____/21:00546784 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s13398-021-01121-4" target="_blank" >https://doi.org/10.1007/s13398-021-01121-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13398-021-01121-4" target="_blank" >10.1007/s13398-021-01121-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On linear continuous operators between distinguished spaces Cp(X)

  • Original language description

    As proved in Ka̧kol and Leiderman (Proc AMS Ser B 8:86–99, 2021), for a Tychonoff space X, a locally convex space Cp(X) is distinguished if and only if X is a Δ -space. If there exists a linear continuous surjective mapping T: Cp(X) → Cp(Y) and Cp(X) is distinguished, then Cp(Y) also is distinguished (Ka̧kol and Leiderman Proc AMS Ser B, 2021). Firstly, in this paper we explore the following question: Under which conditions the operator T: Cp(X) → Cp(Y) above is open? Secondly, we devote a special attention to concrete distinguished spaces Cp([1 , α]) , where α is a countable ordinal number. A complete characterization of all Y which admit a linear continuous surjective mapping T: Cp([1 , α]) → Cp(Y) is given. We also observe that for every countable ordinal α all closed linear subspaces of Cp([1 , α]) are distinguished, thereby answering an open question posed in Ka̧kol and Leiderman (Proc AMS Ser B, 2021).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales

  • ISSN

    1578-7303

  • e-ISSN

    1579-1505

  • Volume of the periodical

    115

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    ES - SPAIN

  • Number of pages

    11

  • Pages from-to

    199

  • UT code for WoS article

    000698668600001

  • EID of the result in the Scopus database

    2-s2.0-85115337368