The Layer complexity of Arthur-Merlin-like communication
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546785" target="_blank" >RIV/67985840:_____/21:00546785 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4086/toc.2021.v017a008" target="_blank" >http://dx.doi.org/10.4086/toc.2021.v017a008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4086/toc.2021.v017a008" target="_blank" >10.4086/toc.2021.v017a008</a>
Alternative languages
Result language
angličtina
Original language name
The Layer complexity of Arthur-Merlin-like communication
Original language description
In communication complexity the Arthur-Merlin (AM) model is the most natural one that allows both randomness and nondeterminism. Presently we do not have any super-logarithmic lower bound for the AM-complexity of an explicit function. Obtaining such a bound is a fundamental challenge to our understanding of communication phenomena.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory of Computing
ISSN
1557-2862
e-ISSN
1557-2862
Volume of the periodical
17
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
8
UT code for WoS article
000813437700001
EID of the result in the Scopus database
2-s2.0-85124905781