All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Asplund space with norming Markuševič basis that is not weakly compactly generated

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546788" target="_blank" >RIV/67985840:_____/21:00546788 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/21:00354984

  • Result on the web

    <a href="https://doi.org/10.1016/j.aim.2021.108041" target="_blank" >https://doi.org/10.1016/j.aim.2021.108041</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2021.108041" target="_blank" >10.1016/j.aim.2021.108041</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Asplund space with norming Markuševič basis that is not weakly compactly generated

  • Original language description

    We construct an Asplund Banach space X with a norming Markuševič basis such that X is not weakly compactly generated. This solves a long-standing open problem from the early nineties, originally due to Gilles Godefroy. En route to the proof, we construct a peculiar example of scattered compact space, that also solves a question due to Wiesław Kubiś and Arkady Leiderman.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

    1090-2082

  • Volume of the periodical

    392

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    108041

  • UT code for WoS article

    000707040300032

  • EID of the result in the Scopus database

    2-s2.0-85113514911