Accurate error estimation in CG
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546795" target="_blank" >RIV/67985840:_____/21:00546795 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/21:10436065
Result on the web
<a href="https://doi.org/10.1007/s11075-021-01078-w" target="_blank" >https://doi.org/10.1007/s11075-021-01078-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-021-01078-w" target="_blank" >10.1007/s11075-021-01078-w</a>
Alternative languages
Result language
angličtina
Original language name
Accurate error estimation in CG
Original language description
In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations Ax = b with a real symmetric positive definite matrix A. During the iterations, it is important to monitor the quality of the approximate solution xk so that the process could be stopped whenever xk is accurate enough. One of the most relevant quantities for monitoring the quality of xk is the squared A-norm of the error vector x − xk. This quantity cannot be easily evaluated, however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Algorithms
ISSN
1017-1398
e-ISSN
1572-9265
Volume of the periodical
88
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
1337-1359
UT code for WoS article
000635870100002
EID of the result in the Scopus database
2-s2.0-85103422252