Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00550721" target="_blank" >RIV/67985840:_____/21:00550721 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.17516/1997-1397-2021-14-6-756-767" target="_blank" >http://dx.doi.org/10.17516/1997-1397-2021-14-6-756-767</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17516/1997-1397-2021-14-6-756-767" target="_blank" >10.17516/1997-1397-2021-14-6-756-767</a>
Alternative languages
Result language
angličtina
Original language name
Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening
Original language description
The paper gives insights into modeling and well-posedness analysis driven by cyclic behavior of particular rate-independent constitutive equations based on the framework of hypoplasticity and on the elastoplastic concept with nonlinear kinematic hardening. Compared to the classical concept of elastoplasticity, in hypoplasticity there is no need to decompose the deformation into elastic and plastic parts. The two different types of nonlinear approaches show some similarities in the structure of the constitutive relations, which are relevant for describing irreversible material properties. These models exhibit unlimited ratchetting under cyclic loading. In numerical simulation it will be demonstrated, how a shakedown behavior under cyclic loading can be achieved with a slightly enhanced simple hypoplastic equations proposed by Bauer.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Siberian Federal University-Mathematics & Physics
ISSN
1997-1397
e-ISSN
2313-6022
Volume of the periodical
14
Issue of the periodical within the volume
6
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
12
Pages from-to
756-767
UT code for WoS article
000757015300009
EID of the result in the Scopus database
2-s2.0-85121848946