Characterization of (semi-)Eberlein compacta using retractional skeletons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00553330" target="_blank" >RIV/67985840:_____/22:00553330 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10456408
Result on the web
<a href="https://dx.doi.org/10.4064/sm200916-28-6" target="_blank" >https://dx.doi.org/10.4064/sm200916-28-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm200916-28-6" target="_blank" >10.4064/sm200916-28-6</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of (semi-)Eberlein compacta using retractional skeletons
Original language description
We study retractions associated to suitable models in compact spaces admitting a retractional skeleton and find several interesting consequences. Most importantly, we provide a new characterization of Valdivia compacta using the notion of retractional skeletons, which seems to be helpful when characterizing their subclasses. Further, we characterize Eberlein and semi-Eberlein compacta in terms of retractional skeletons and show that our new characterizations give an alternative proof of the fact that a continuous image of an Eberlein compact is Eberlein as well as new stability results for the class of semi-Eberlein compacta, solving in particular an open problem posed by Kubiś and Leiderman.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-05271Y" target="_blank" >GJ19-05271Y: Groups and their actions, operator algebras, and descriptive set theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia mathematica
ISSN
0039-3223
e-ISSN
1730-6337
Volume of the periodical
263
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
40
Pages from-to
159-198
UT code for WoS article
000721555300001
EID of the result in the Scopus database
2-s2.0-85149694551