Weak solutions for a bifluid model for a mixture of two compressible noninteracting fluids with general boundary data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00554415" target="_blank" >RIV/67985840:_____/22:00554415 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/22:00364802
Result on the web
<a href="https://doi.org/10.1137/21M1419246" target="_blank" >https://doi.org/10.1137/21M1419246</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1419246" target="_blank" >10.1137/21M1419246</a>
Alternative languages
Result language
angličtina
Original language name
Weak solutions for a bifluid model for a mixture of two compressible noninteracting fluids with general boundary data
Original language description
We prove global existence of weak solutions for a version of the one velocity Baer--Nunziato system with dissipation describing a mixture of two noninteracting viscous compressible fluids in a piecewise regular Lipschitz domain with general inflow/outflow boundary conditions. The geometrical setting is general enough to comply with most current domains important for applications, such as (curved) pipes of piecewise regular and axis-dependent cross-sections. For the existence proof, we adapt to the system the classical Lions--Feireisl approach to the compressible Navier--Stokes equations which is combined with a generalization of the theory of renormalized solutions to the transport equations in the spirit of Vasseur, Wen, and Yu [J. Math. Pures Appl. (9), 125 (2019), pp. 247--282]. The results related to the families of transport equations presented in this paper extend/improve some statements of the theory of renormalized solutions and are therefore of independent interest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Volume of the periodical
54
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
54
Pages from-to
818-871
UT code for WoS article
000762768000024
EID of the result in the Scopus database
2-s2.0-85128914685