All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weakly Corson compact trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556313" target="_blank" >RIV/67985840:_____/22:00556313 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/22:00360038

  • Result on the web

    <a href="https://doi.org/10.1007/s11117-022-00874-5" target="_blank" >https://doi.org/10.1007/s11117-022-00874-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11117-022-00874-5" target="_blank" >10.1007/s11117-022-00874-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weakly Corson compact trees

  • Original language description

    We introduce and study a new topology on trees, that we call the countably coarse wedge topology. Such a topology is strictly finer than the coarse wedge topology and it turns every chain complete, rooted tree into a Fréchet–Urysohn, countably compact topological space. We show the rôle of such topology in the theory of weakly Corson and weakly Valdivia compacta. In particular, we give the first example of a compact space T whose every closed subspace is weakly Valdivia, yet T is not weakly Corson. This answers a question due to Ondřej Kalenda.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Positivity

  • ISSN

    1385-1292

  • e-ISSN

    1572-9281

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    33

  • UT code for WoS article

    000769465800001

  • EID of the result in the Scopus database

    2-s2.0-85126260804