Weakly Corson compact trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556313" target="_blank" >RIV/67985840:_____/22:00556313 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/22:00360038
Result on the web
<a href="https://doi.org/10.1007/s11117-022-00874-5" target="_blank" >https://doi.org/10.1007/s11117-022-00874-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11117-022-00874-5" target="_blank" >10.1007/s11117-022-00874-5</a>
Alternative languages
Result language
angličtina
Original language name
Weakly Corson compact trees
Original language description
We introduce and study a new topology on trees, that we call the countably coarse wedge topology. Such a topology is strictly finer than the coarse wedge topology and it turns every chain complete, rooted tree into a Fréchet–Urysohn, countably compact topological space. We show the rôle of such topology in the theory of weakly Corson and weakly Valdivia compacta. In particular, we give the first example of a compact space T whose every closed subspace is weakly Valdivia, yet T is not weakly Corson. This answers a question due to Ondřej Kalenda.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Positivity
ISSN
1385-1292
e-ISSN
1572-9281
Volume of the periodical
26
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
33
UT code for WoS article
000769465800001
EID of the result in the Scopus database
2-s2.0-85126260804