The Weyl-Mellin quantization map
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556318" target="_blank" >RIV/67985840:_____/22:00556318 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0219887822500311" target="_blank" >https://doi.org/10.1142/S0219887822500311</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219887822500311" target="_blank" >10.1142/S0219887822500311</a>
Alternative languages
Result language
angličtina
Original language name
The Weyl-Mellin quantization map
Original language description
In this paper, we present a quantization of the functions of spacetime, i.e. a map, analog to Weyl map, which reproduces the κ-Minkowski commutation relations, and it has the desirable properties of mapping square integrable functions into Hilbert-Schmidt operators, as well as real functions into symmetric operators. The map is based on Mellin transform on radial and time coordinates. The map also defines a deformed - product which we discuss with examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-17488Y" target="_blank" >GJ20-17488Y: Applications of C*-algebra classification: dynamics, geometry, and their quantum analogues</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of geometric Methods in Modern Physics
ISSN
0219-8878
e-ISSN
1793-6977
Volume of the periodical
19
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
20
Pages from-to
2250031
UT code for WoS article
000769648000006
EID of the result in the Scopus database
2-s2.0-85121581718