All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of real trivectors in dimension nine

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556583" target="_blank" >RIV/67985840:_____/22:00556583 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jalgebra.2022.04.003" target="_blank" >https://doi.org/10.1016/j.jalgebra.2022.04.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2022.04.003" target="_blank" >10.1016/j.jalgebra.2022.04.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of real trivectors in dimension nine

  • Original language description

    In this paper we classify real trivectors in dimension 9. The corresponding classification over the field C of complex numbers was obtained by Vinberg and Elashvili in 1978. One of the main tools used for their classification was the construction of the representation of SL(9,C) on the space of complex trivectors of C^9 as a theta-representation corresponding to a Z/3Z-grading of the simple complex Lie algebra of type E_8. This divides the trivectors into three groups: nilpotent, semisimple, and mixed trivectors. Our classification follows the same pattern. We use Galois cohomology, first and second, to obtain the classification over R.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GC18-01953J" target="_blank" >GC18-01953J: Geometric methods in statistical learning theory and applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

    1090-266X

  • Volume of the periodical

    603

  • Issue of the periodical within the volume

    August 1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    46

  • Pages from-to

    118-163

  • UT code for WoS article

    000807842200006

  • EID of the result in the Scopus database

    2-s2.0-85128213865