All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exponentiable Grothendieck categories in flat algebraic geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557712" target="_blank" >RIV/67985840:_____/22:00557712 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jalgebra.2022.03.040" target="_blank" >https://doi.org/10.1016/j.jalgebra.2022.03.040</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2022.03.040" target="_blank" >10.1016/j.jalgebra.2022.03.040</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exponentiable Grothendieck categories in flat algebraic geometry

  • Original language description

    We introduce and describe the 2-category Grt♭ of Grothendieck categories and flat morphisms between them. First, we show that the tensor product of locally presentable linear categories ⊠ restricts nicely to Grt♭. Then, we characterize exponentiable objects with respect to ⊠: these are the continuous Grothendieck categories. In particular, locally finitely presentable Grothendieck categories are exponentiable. Consequently, we have that, for a quasi-compact quasi-separated scheme X, the category of quasi-coherent sheaves Qcoh(X) is exponentiable. Finally, we provide a family of examples and concrete computations of exponentials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

    1090-266X

  • Volume of the periodical

    604

  • Issue of the periodical within the volume

    August 15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    44

  • Pages from-to

    362-405

  • UT code for WoS article

    000802789300012

  • EID of the result in the Scopus database

    2-s2.0-85129270023