Countably generated flat modules are quite flat
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557869" target="_blank" >RIV/67985840:_____/22:00557869 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10454755
Result on the web
<a href="http://https:dx.doi.org/10.1216/jca.2022.14.37" target="_blank" >http://https:dx.doi.org/10.1216/jca.2022.14.37</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1216/jca.2022.14.37" target="_blank" >10.1216/jca.2022.14.37</a>
Alternative languages
Result language
angličtina
Original language name
Countably generated flat modules are quite flat
Original language description
We prove that if R is a commutative Noetherian ring, then every countably generated flat R-module is quite flat, i.e., a direct summand of a transfinite extension of localizations of R in countable multiplicative subsets. We also show that if the spectrum of R is of cardinality less than kappa, where kappa is an uncountable regular cardinal, then every flat R-module is a transfinite extension of flat modules with less than kappa generators. This provides an alternative proof of the fact that over a commutative Noetherian ring with countable spectrum, all flat modules are quite flat. More generally, we say that a commutative ring is CFQ if every countably presented flat R-module is quite flat. We show that all von Neumann regular rings and all S-almost perfect rings are CFQ. A zero-dimensional local ring is CFQ if and only if it is perfect. A domain is CFQ if and only if all its proper quotient rings are CFQ. A valuation domain is CFQ if and only if it is strongly discrete.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Commutative Algebra
ISSN
1939-0807
e-ISSN
1939-2346
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
37-54
UT code for WoS article
000808049400004
EID of the result in the Scopus database
2-s2.0-85131455805