All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Regularity criteria for weak solutions to the Navier-Stokes equations in terms of spectral projections of vorticity and velocity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00562011" target="_blank" >RIV/67985840:_____/22:00562011 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00021-022-00728-w" target="_blank" >https://doi.org/10.1007/s00021-022-00728-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-022-00728-w" target="_blank" >10.1007/s00021-022-00728-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Regularity criteria for weak solutions to the Navier-Stokes equations in terms of spectral projections of vorticity and velocity

  • Original language description

    We deal with a weak solution v to the Navier-Stokes initial value problem in R-3 x (0, T), that satisfies the strong energy inequality. We impose conditions on certain spectral projections of omega:= curly or just v, and we prove the regularity of solution v. The spectral projection is defined by means of the spectral resolution of identity associated with the self-adjoint operator curl.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    104

  • UT code for WoS article

    000860558100001

  • EID of the result in the Scopus database

    2-s2.0-85139127470