Local-in-time existence of strong solutions to a class of compressible non-Newtonian Navier-Stokes equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00562805" target="_blank" >RIV/67985840:_____/22:00562805 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00208-021-02301-8" target="_blank" >https://doi.org/10.1007/s00208-021-02301-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-021-02301-8" target="_blank" >10.1007/s00208-021-02301-8</a>
Alternative languages
Result language
angličtina
Original language name
Local-in-time existence of strong solutions to a class of compressible non-Newtonian Navier-Stokes equations
Original language description
The aim of this article is to show a local-in-time existence of a strong solution to the generalized compressible Navier-Stokes equations for arbitrarily large initial data. The goal is reached by Lp-theory for linearized equations which are obtained with help of the Weis multiplier theorem and can be seen as a generalization of the work of Enomoto and Shibata (Funkcial Ekvac 56(3):441–505, 2013) (devoted to compressible fluids) to compressible non-Newtonian fluids.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
1432-1807
Volume of the periodical
384
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
33
Pages from-to
1057-1089
UT code for WoS article
000718064400001
EID of the result in the Scopus database
2-s2.0-85119248425