Weighted inequalities for discrete iterated kernel operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00564898" target="_blank" >RIV/67985840:_____/22:00564898 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10475922
Result on the web
<a href="https://doi.org/10.1002/mana.202000144" target="_blank" >https://doi.org/10.1002/mana.202000144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202000144" target="_blank" >10.1002/mana.202000144</a>
Alternative languages
Result language
angličtina
Original language name
Weighted inequalities for discrete iterated kernel operators
Original language description
We develop a new method that enables us to solve the open problem of characterizing discrete inequalities for kernel operators involving suprema. More precisely, we establish necessary and sufficient conditions under which there exists a positive constant C such that (Formula presented.) holds for every sequence of nonnegative numbers (Formula presented.) where U is a kernel satisfying certain regularity condition, (Formula presented.) and (Formula presented.) and (Formula presented.) are fixed weight sequences. We do the same for the inequality (Formula presented.) We characterize these inequalities by conditions of both discrete and continuous nature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
295
Issue of the periodical within the volume
11
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
2171-2196
UT code for WoS article
000879284700001
EID of the result in the Scopus database
2-s2.0-85141482071